From GPS to multi-GNSS

Hendrik Lee
Senior Technical Manager
September 2015
u-blox at a glance

- **Swiss semiconductor company**
 - Founded in 1997
 - Listed on the SIX Swiss Exchange since 2007 (SIX:UBXN)

- **Core competencies**
 - Satellite based positioning technologies
 - Cellular communications technologies
 - Short range radio technologies

- **Product offering**
 - Integrated circuits – the foundation of our solutions
 - Modules – fully implemented, drop-in solutions
 - Services – delivering added value to our solutions

- **Market focus**
 - Automotive – robust, automotive grade products
 - Industrial – durable components for professional electronics
 - Consumer – mass market ICs and modules
u-blox at a glance

Revenue history and guidance

- u-blox is fast-growing and cash-flow positive

Global market leaders rely on u-blox’ local presence

- Note: official reporting in Swiss Francs
- ** Guidance for the full year of revenues between CHF 335-345 million
u-blox in China

1997 u-blox founded in Switzerland
2001 u-blox subsidiary in Hong Kong
2007 u-blox representative office in Beijing
2011 u-blox representative office in Shenzhen
2013 u-blox shows BeiDou receiver only 3 weeks after publication of BeiDou specification
2013 u-blox representative office in Shanghai
2014 Launch of u-blox M8 GPS, BeiDou, GLONASS receivers. World’s first chip with BeiDou in ROM.
2015 u-blox representative office in Chongqing
Long-lasting experiences with GNSS platforms

GPS-MS1E
- World’s first SMD GPS module

ANTARIS
- GPS
- Dead Reckoning

ANTARIS 4

u-blox 5
- GPS
- Galileo ready

u-blox 6
- GPS
- Galileo ready
- Dead Reckoning

u-blox 7
- GPS, GLONASS

u-blox M8
- GPS, GLONASS, BeiDou, Galileo
- 3D Dead Reckoning
GNSS L1 Frequencies

- GPS, Galileo, and QZSS transmit on the same frequency.

 - BeiDou operates at a lower frequency.
 - GLONASS operates at a higher frequency range.

- The diagram shows:
 - BeiDou P2 at 1561 MHz.
 - GPS, Galileo, QZSS at 1575 MHz.
 - GLONASS L1OF at 1598 MHz.
 - A different range from 1610 MHz.
Receiver requirements

- Reception of more than one frequency has impact on receiver design
- GPS, Galileo, QZSS requires only small bandwidth → Minimal power consumption
- Multi-GNSS requires a large bandwidth → 40 to 50% higher power consumption
Multi-GNSS improves performance in urban areas

- A car driving through an urban canyon only have a slot like view to the sky.
 - This limits the number of visible GPS satellites (blue).

- Adding satellites (red) from other GNSS improves PDOP and accuracy
- More line-of-sight satellites help to suppress multipath and hence improve accuracy
Multi-GNSS improves performance in urban areas

- Roadtest in City of London make performance benefit of multi-GNSS (green) over GPS (red) obvious
Galileo

- In-Orbit Validation phase completed
- In preparation of Initial Operational Capability
 - 5 fully operational satellites available (9. Sep 2015)
 - 2 additional satellite scheduled for launch on 11. Sep 2015

- u-blox will support Galileo on u-blox M8 receivers
 - Galileo with GPS improves accuracy with hardly any power increase.
 - Triple constellation mode further improves accuracy
Questions?
locate, communicate, accelerate

Thank you!